Cell-based imaging of sodium iodide symporter activity with the yellow fluorescent protein variant YFP-H148Q/I152L.
نویسندگان
چکیده
The sodium iodide symporter (NIS) mediates iodide (I(-)) transport in the thyroid gland and other tissues and is of increasing importance as a therapeutic target and nuclear imaging reporter. NIS activity in vitro is currently measured with radiotracers and electrophysiological techniques. We report on the development of a novel live cell imaging assay of NIS activity using the I(-)-sensitive and genetically encodable yellow fluorescent protein (YFP) variant YFP-H148Q/I152L. In FRTL-5 thyrocytes stably expressing YFP-H148Q/I152L, I(-) induced a rapid and reversible decrease in cellular fluorescence characterized by 1) high affinity for extracellular I(-) (35 muM), 2) inhibition by the NIS inhibitor perchlorate, 3) extracellular Na(+) dependence, and 4) TSH dependence, suggesting that fluorescence changes are due to I(-) influx via NIS. Individual cells within a population of FRTL-5 cells exhibited a 3.5-fold variation in the rate of NIS-mediated I(-) influx, illustrating the utility of YFP-H148Q/I152L to detect cell-to-cell difference in NIS activity. I(-) also caused a perchlorate-sensitive decrease in YFP-H148Q/I152L fluorescence in COS-7 cells expressing NIS but not in cells lacking NIS. These results demonstrate that YFP-H148Q/I152L is a sensitive biosensor of NIS-mediated I(-) uptake in thyroid cells and in nonthyroidal cells following gene transfer and suggest that fluorescence detection of cellular I(-) may be a useful tool by which to study the pathophysiology and pharmacology of NIS.
منابع مشابه
A Genetically-Encoded YFP Sensor with Enhanced Chloride Sensitivity, Photostability and Reduced pH Interference Demonstrates Augmented Transmembrane Chloride Movement by Gerbil Prestin (SLC26a5)
BACKGROUND Chloride is the major anion in cells, with many diseases arising from disordered Cl- regulation. For the non-invasive investigation of Cl- flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl- sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measureme...
متن کاملAnoctamin 1 is apically expressed on thyroid follicular cells and contributes to ATP- and calcium-activated iodide efflux.
BACKGROUND/AIMS Iodide efflux from thyroid cells into the follicular lumen is essential for the synthesis of thyroid hormones, however, the pathways mediating this transport have only been partially identified. A calcium-activated pathway of iodide efflux has long been recognized, but its molecular identity unknown. Anoctamin 1 (ANO1) is a calcium-activated chloride channel (CaCC), and this stu...
متن کاملYellow Fluorescent Protein-Based Assay to Measure GABAA Channel Activation and Allosteric Modulation in CHO-K1 Cells
The γ-aminobutyric acid A (GABA(A)) ion channels are important drug targets for treatment of neurological and psychiatric disorders. Finding GABA(A) channel subtype selective allosteric modulators could lead to new improved treatments. However, the progress in this area has been obstructed by the challenging task of developing functional assays to support screening efforts and the generation of...
متن کاملA new high-throughput screening-compatible gap junctional intercellular communication assay
BACKGROUND Gap junctions (GJs) are intercellular channels through which molecules smaller than 1 kDa can diffuse, and they have been suggested as drug targets. To develop chemical drugs acting on this target, a high-throughput screening (HTS) system for GJ modulators is necessary. RESULTS We designed a new, high-throughput GJ intercellular communication (GJIC) assay. This assay system consist...
متن کاملSmall-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel.
Calcium-activated chloride channels (CaCCs) are widely expressed in mammalian tissues, including intestinal epithelia, where they facilitate fluid secretion. Potent, selective CaCC inhibitors have not been available. We established a high-throughput screen for identification of inhibitors of a human intestinal CaCC based on inhibition of ATP/carbachol-stimulated iodide influx in HT-29 cells aft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007